Experiments on a level set method
for ductile fracture

Small Project GMT

Thomas Breekveldt
4037324

January 31, 2014



1 Introduction

The game development industry has seen a large focus on realistic graphics.
While there is continuous development, other aspects of the game development
should be capable of contributing more. One of these areas is game physics.

Often when something is destroyed in a game environment, an artist already
defined how it should look destroyed long before you picked up the game and
decided how you wanted to destroy said object. Making the player’s options,
in my opinion, feel rather limited. Some games do have actual physics for de-
structable objects, but are then limited to specific objects and regions. Perhaps
my personal observation came from a limited dataset, but nevertheless this ob-
servation became the spark of my interest in game physics. It made me wonder
what the state of the art for physics simulation is, how far we can go with this.
And where else should I look than recent research developments.

Continuing from the drive for realism, simulations running in real time were
dropped in favor of research on slower physically accurate simulations. Along
with the emphasis on deformation and destruction the paper A Level Set Method
for Ductile Fracture by Hegemann et al.[1] caught my attention.

This report contains the implementation details and the results of an experi-
mentation with the implementation according to the paper of Jan Hegemann et
al. To be more precise, experimentation with the tearing of objects under stress.
A number of simulations have been ran on the same object but with varying
material properties to evaluate what the method is capable of. To decrease the
complexity of the implementation several aspects have been simplified. The
mesh object is simplified and the simulation uses forward Euler instead of back-
ward Euler to run the simulation. The reasons and implications for these will
be explained in the relevant chapters.

Chapter 2 will elaborate on the method described by Hegemann et al. and
highlight the core mechanics of the method. In Chapter 3 I will give an indepth
description of my implementation of the method and the differences between the
original method. Then in chapter 4 I’ll present the setup of the experiment and
its results. Where I'll be discussing them along with the state of the implemen-
tation in chapter 5. Finally a few guide-lines for future work on this code-base
in chapter 6.

2 A Level Set Method for Ductile Fracture

The method described in the original paper [1] focusses on the ductile fractur-
ing of hyper-elastic materials. This means that the simulated object can tear
in a slow manner, not instantly snapping in two like a match stick or crumbling
like a wall. Hyper-elasticity means that the stress inside an object is the same
regardless of how its current position has been reached. This simplifies calcula-
tions as only the current state of the object matters and no part of its previous
deformation has an effect on the stress. But the surface has to be continuously
updated while the fracturing is in process. Before I explain the contribution by



Hegemann et al. T will first explain the basis which the method relies on. Here
is a quick summary:

e Tetrahedal mesh coupled with levelset to visualize the object

e Backwards Euler FEM simulation on the material nodes to update the
positions

e Griffiths energy evolution to alter levelset for the fracturing

The section about (self)collision will be omitted because my implementa-
tion does not implement (self)collision and the experiment is constructed that
(self)collision does not affect anything.

2.1 Core Mechanics

The mesh object, called a tetrahedal mesh, is a collection of tetrahedra created
from a uniform point grid. Where a triangle mesh is created with two triangles
using four nodes in a 2d point grid, six tetrahedra are created from eight points
in a 3d point grid. Figure shows an example of a 2d grid. This mesh object works
together with a levelset to increase the level of detail and be more dynamic. This
levelset consists of a uniform point grid, which in this case is a 3d point grid
because our object is 3 dimensional, where for each point in the grid stores the
distance to the closest surface of the object. Here a positive value means the
point is outside the object and a negative value means it is inside the object.
From these point values a more accurate surface can be constructed ontop of
the tetrahedal mesh. Tetrahedra outside of the levelset are empty, tetrahedra
inside the object are complete, and tetrahedra intersecting the levelset surface
are cut by a plane of the level set. With this coupling of the two data structures
the deformation (ie. compression or stretching) of the object is encoded in the
tetrahedra, and the alteration of the surface is encoded by the levelset and the
corresponding cut-planes of the tetrahedra.

Finite Element Method (FEM) simulation will be ran on the object which
was just described. This is a simulation where the influence of every point
connected to another point is calculated when the simulation makes another
time step. The rest of this section describes the computations required for the
FEM simulation.

The calculation of current stress inside the object becomes straightforward
when using the tetrahedra. Sifakis et al. [2] present in their paper in chapter
4 the pseudo code for their algorithm 1. In this procedure the difference in
position of each tetrahedra compared to its rest-state is used to compute the
amount of deformation for that tetrahedra, called the deformation gradient F.
To compute meaningful stress forces from F, we first convert the deformation
gradient to the first Piola-Kirchoff stress value P. This conversion depends on
the strain measure, a mathematical relation between deformation and strain
energy, used. Chapter 3 of Sifakis et al.[2] describe different strain measures



and their benefits and downsides. Hegemann et al. use for this simulation the
corotational energy density defined as:

P(F) = 2u(F — R) + Mr(RTF — 1) (1)

The matrix R comes from the matrix polar decomposition of F = RS. Where
R is the rotational component and S is the symmetric component of the de-
composition. Internal stress forces can be computed from the combination of
the strain measure and the deformation gradient.

When computing new positions for the mesh points the movement of a single
point has influence on the movement of other points in the same time step.
And those altered movements have a different influence on the single point
mentioned before, altering its movement and its influence on the other points.
In other words, the accurate computation of the point’s movement is affected
by itself, making the result of the equation dependent on itself as input. To
solve this the backwards Euler method by Sifakis et al.[2] is used to construct an
iterative process that computes these new point locations. This does complicate
a number of things. Where we used the deformation gradient and the first Piola-
Kirchoff stress value we now need both of their derivatives. The derivative of the
deformation gradient §F is constructed in algorithm 2 presented by Sifakis et
al.[2] in a similar fashion as F. The derivative of the corotational strain measure
0P is presented by McAdams et al.[3].

The backwards euler method uses an iterative process to converge to the
correct answer of the current time-step. To compute one time step a matrix
equation of the form Az = b has to be solved for . This is done using a Krylov
subspace method such as Conjugate Gradients. The Conjugate gradient method
numerically solves the Ax = b equation. In our case the matrix A is the strain
matrix K which is n x n where n is the number of nodes inside the uniform grid.
We can avoid constructing this large matrix because the Conjugate Gradients
method only relies on a matrix-vector multiplication with A and we compute
this multiplication directly with Algorithm 2 given by Sifakis et al. [2] where
0P (F) is given by McAdams et al.[3]:

6P = 2u0F + Mtr(RTOF)R + {Mr(S —I) — 2u}sR (2)

2.2 Innovation

The main contribution stated by the paper is their usage of Griffiths energy
minimization. But first it is needed to compute the stress energy values for the
nodes. Instead of computing the strain measure from the deformation gradient
we compute the energy density.

W(F) = [P~ RJlp + 5 (tr(S — T))? 3

The nodal energy values are then computed as defined by Hegemann et al.[1].
This is a summation over the energies of the tetrahedra 7} node X, is part of,



normalized by their respective volume.

S X, e, U (TE) [, Np(X)dX

Ek,Xp.eT,c ka NP(X)dX

U(X,) = (4)

This ¥ value can then be entered in the Griffith energy formula along with
the ¢ value which is the node’s levelset value, the distance of the node to the
closest surface. This creates a new QAS value which will be used to update the
level set.

¢ =+ Asb(d)(¥ — k) (5)

The nodal energy ¥ is compared against the fracture resistance k. This only
generates a positive value when the nodal energy exceeds the fracture resistance.
The resulting value is then scaled by the Dirac delta function d.. This delta
function is special because it creates an infinitely large number when the input
is zero, and results in zero otherwise. But since we’re dealing with a function
approximate d.(¢) = %ﬁ with € to be machine precision, input values close
to zero will also result in values larger than zero. This is then scaled yet again
by the time step size As. This time step size is under constraint of Courant-
Friedrichs-Lewy condition. The CFL restriction reduces the time step size in
relation to the nodal velocities, higher nodal velocities result in smaller time
steps. This is to ensure numeric stability. Finally the value is added to the
current ¢.

If ngS < ¢ this would effectively mean the volume got increased. A negative
value is inside the surface and decreasing this value would effectively push the
surface further away from the point. Because we only want to lose volume when
fracturing or damaging objects we ignore the new (;AS value when ¢ < ¢, only
when the volume shrinks is when the levelset gets updated.

With this you have a function that notices high stress values at the surface of
objects and reacts by moving the surface closer to the stressed point. Effectively
creating a tear in the surface. That is exactly what we want when a material is
affected forces that are large enough.

3 Implementation

This chapter elaborates on the implementation decisions made when recreat-
ing the method. Among these are the library choice and concessions made to
simplify the implementation.

3.1 The Starting Point

When the choice had been made to recreate the method by Hegemann et al. the
authors had no source-code available online. And with the scope of the method
an entire implementation from scratch was not feasible. Therefore preliminary
research had to be conducted to find potential starting points for this project.



From an online search a number physics libraries and Finite Element Method
simulators are freely available.

There are a number of software packages such as FEBio that can perform
FEM simulation straight out of the box. It is as simple as installing a program,
give it an input object and it generates an output for you. FEBio is a soft-
ware package mainly being used for bio medical simulations[4], but it is a FEM
simulator nontheless. Unfortunately all of these packages I found were closed
source software packages. That meant that I would be unable to directly im-
plement the method because it requires modification of the input object during
the simulation.

PhysBAM is a physics engine from the Stanford University and their website([5]
has a couple examples listed. These examples vary between images and videos,
about fluid and fracturing simulations among others. One of the authors of
the paper I'm trying to implement worked on these examples, or has previously
cooperated with some of the authors of the examples. Noticable being M. Teran
working on both the method i’m trying to implement and being a co-author of
McAdams et al. and Craig Schroeder’s work on deformable models and rigid
body simulation. The PhysBAM library has been made partially available for
download along with source-code of a fluid simulation implemented using a level
set method and a smoke simulation.

OOFEM is an object oriented finite element method simulation library|[6].
Has an active community behind it using the available forum and tutorials.
But seemed to lack some datastructures required for the method. The available
footage showcasing work with the libarary were disappointing when compared
to PhysBAM, both in quality as in numbers and diversity.

Neither of the choices were matching my needs perfectly: On one end Phys-
BAM a high end physics library without having built-in FEM simulation and
on the other end the OOFEM library where I would have to implement data
structures myself. This would include the math for the generation and coupling
between a level set and a tetrahedal mesh.

Having read the paper by Sifakis et al.[2] T had a grasp on the basics of
FEM simulation. But having read the paper by Vese et al.[7], I became more
daunted by implementing a level set. This swayed my opinion in the direction of
PhysBAM. I was more daunted by constructing the data structure than figuring
out the exact workings of the pseudo code.

Some initial problems were the lack of documentation which was mediated by
a third party program constructing the bare minimum of documentation using
the source code directly. This documentation consists of inheritance overview,
and a structured collection of class- and method-names. The other problem was
the PhysBAM website only having instructions to deploy the library for linux.
Being unable to compile large parts of the library due to differences between
MSVS C++ compiler and linux gcc the choice was made to switch the entire
project to linux.



3.2 Implementation

To reconstruct the datastructure individual components were used rather than
the combination of level set and tetrahedal mesh into one. Mainly because of
the individual components were readily available within the library. Because
of the lack of coupling decribed in chapter 2 between the level set and the
tetrahedal mesh it was required to reconstruct the tetrahedal mesh when the
level set got modified. The same counted for reinitializing the levelset to start
the next iteration of the simulation. However, the function to create a level set
from a mesh looked at same world space the tetrahedal mesh was simulated in
but required the object’s rest-state to describe the surface in the level set. If
the tetrahedal mesh was modified in world space (ie. moved, compressed, etc)
the parts of the level set would be wrong. This is because the grid the level
set worked on was not modified, creating an offset between the two. This was
remedied by creating a second tetrahedal mesh which would only be used to
reinitialize the level set. The order of execution would be:

1. FEM simulation time-step.

2. Update level set using Griffiths energy evolution.

3. Update both tetrahedal meshes using new level set.
4. Update level set using rest-state mesh.

The tetrahedal mesh is not using cut-planes to represent the surface but just
the triangles of the surface tetrahedrons. The implications of not having this
appeared to be minimal and was thus left as a could-have feature.

The FEM simulation is done using forward Euler. Calculations of the defor-
mation gradient F and the first Piola-Kirchoff stress P are done normally but
the time-stepping is naively done by looking at the internal and external forces
and disregarding the influence a point should have on the points its connected
with. With a plain computation per node of f = m X a, v = v + a x At, and
x = x + v x At. This is because the implementation for backwards Euler never
converged to a solution value despite frequent debugging. This was causing the
material to explode rather than stabilizing. Forward Euler was considered to
be acceptible enough to produce experiment results.

3.3 Compromises

With the recomputation of the mesh comes a significant memory burden. In-
stead of currently allocated memory being altered, a new block of memory is
requested to rebuild the mesh tetrahedal relations from scratch. Not once, but
twice, because of the two mesh objects being used. So when recomputing the
mesh we reallocate two large blocks of memory which costs a significant amount
of time each iteration.

The lack of cut-planes for the surface only removes a degree of detail from
the simulation. Where in the original method the cutplane would move as the



levelset moves creating a smooth tearing. In this implementation the mesh
stays the same until a node is no longer contained by the levelset, making the
tetrahedra pop loose. An analogy for for this difference is similar to comparing
the tearing of fabric or tearing open a blouse where the buttons pop open one-
by-one. How much this affects accuracy is unknown.

Using forward Euler has a large downside: forces and stress distribution
behave as ripples now. If implemented correctly, the displacement of one node
has effect on another node, and displaces it. But that second displacement
has effect on the initial displacement, meaning the result of the computation is
dependent on itself as input. With forward Euler the effect of node displacement
will only be accounted for the next frame. By increasing the amount of sub-
frames for calculation between each drawn frame this effect is reduced.

The amount of subframes has therefore been increased to a static number e.g.
20x the frame rate, instead of a scaling factor dependent on nodal velocities as
the orignial implementation by Hegemann et al. has, with the CFL restriction.

4 Experiment

The experiment is a crucial part of this project for two reasons. One is to
validate the implementation, to see if the results created by the original author
can be repeated. The other is to push this implementation of the method to its
limits.

4.1 Setup

Figure 1: Object used to compare different material properties at different res-
olutions of grid points. From left to right: 100,503,203

The setup of the experiment is a cube with a cylinder shape cut out from
its side as shown in Figure 1. This object is being pulled both up and down
at the same time to create a stretching stress force. This setup mimics one
of the scenarios in the example video. In that video three similar object with
different fracturing resistances were put under the same stress tests for a simple
and direct comparison. However, in this experiment there is no gravity force



being simulated. The object shape was chosen because it guarantees tearing in
specific regions and the stress test was chosen because of its simplicity and the
lack of requirement for (self)collision.

Initial experiments were to give an indication to what each variable does to
the simulation. Being new to the subject I was not fully aware of the proper-
ties. The first experiment was therefore varying the Poisson ratio to see how it
affects the simulation. Second came the varying of the Young’s modulus. After
those initial tests came the experiment of lowering the fracture resistance to
see how the simulation behaves, and increasing the resolution of the simulation.
However, higher resolution simulations suffer from the exponential increase in
run-time and therefore less of those simulations have been ran.

4.2 Results

For the first experiments the varying of the Poisson ratio was chosen. This vari-
able is only meaningful when set between 0 and 0.5. Three relatively arbitrary
numbers were chosen to represent a low, medium and high Poisson ratio. These
values are relatively 0.10, 0.23 and 0.49. Other variables were kept the same
with the fracture resistance x = 100, Young’s modulus = 50 and the resolution
at 203 points. The results of these simulations are shown in Figure 2.

0.23

Poisson Ratio

Figure 2: The behaviour of different Poisson ratio’s at the same time step in
the simulation.

From these results we can deduct that an object with a higher Poisson ratio
tries harder to maintain its volume. This would be done by creating stress forces
which pull the points closer together. With a poisson ratio of 0.49 the object is
thinned in the center to compensate for the stretching of the volume. When the
Poisson ratio is lower the inward forces will be lower making the effect become
less apparent.

The experiments with the Poisson ratio have been repeated a couple of times
with a varying Young’s modulus, as shown in Figure 3 still having the same
fracture resistance x = 100 and resolution = 20% points. When looking at the



Poisson Ratio:
0.23

Frame #

Young’s
Modulus:

50

Figure 3: Different combinations of Young’s modulus and Poisson ratio. All
entries on the same horizontal row are from the same time step in the simulation.

fractures in the simulation it appears that with the chosen values the Young’s
modulus has the biggest influence in when a fracture occurs, and the Poisson
ratio affects more where the fracture occurs. With a higher or lower Young’s
modulus the fracturing occurs, respectively, faster or slower. Having a high
Poisson ratio increases the stress in the corners resulting a diagonal fracture
starting from the center and going to the top corner, where with a lower Poisson
ratio the fracture occurs horizontal through the thinnest part of the object. The
increased influence of the Young’s modulus could be explained by the opposite
stretching forces generated by the experiment affecting the Young’s modulus
the most. Where perhaps a twisting motion could affect the Poisson ratio more.

As a side note: an interesting aspect of the method is the inherent ability to

10



generate fragment pieces when fracturing occurs as visible in the top right case
of Figure 3.

Armed with this knowledge of the two material properties some experiments
with the fracture resistance have been made. When increasing the fracture
resistance it generally takes longer for the fracturing occurs until either the
Young’s modulus or the Poisson ratio contributes enough to create a fracture,
given this still occurs within the simulation time. What was more interesting
to examine was the effects occuring when the fracture resistance gradually got
lowered. An example is shown in Figure 4 where the Young’s modulus = 1000,
the Poisson ratio = 0.49 and the resolution is still at 20® points.

40 30

Kappa values:

Figure 4: The effect of lowering the fracture resistance value k. With k = 20 a
piece breaks off seconds after the initial fracture occurred.

This rotated view compared to the previous examples is to put emphasis on
the crack appearing in the backside. When the diagonal fracture occurs from
the normal fracturing with x set normally the Poisson ratio creates stress values
large enough to cause fractures in other corners aside from the top ones. When
is sufficiently low the following happens. The extra fracture causes a large piece
of the object to remain attached to the main object through a relatively small
contact area. With the gravity-free simulation environment and the damping
force, all points want to eventually stop moving. But the top and bottom of
the initial object will continue to get moved regardless, creating a stress on the
smaller connecting piece to pull all remaining points with it. What happened in
the case of k = 20 is that the stress on that smaller part exceeded the x-value,
resulting in more fractures and eventually releasing the large chunk from the
pulling forces on the bottom. In other words, the fracture resistance was so
low that the object fractures under its own movement. This behaviour could
potentially be used to simulate extremely fragile foam-materials which breaks
into chunks when the object is moved, eg. foam in a bathtub is barely able to
remain intact when creating a non-convex shape and moving it around.

After exploring the three material properties let’s scale up a simulation to
a resolution of 503 points. Taking a previously used experiment of a lower
resolution, it is scaled up directly as shown in the second example in Figure 5.
This created artefacts similar to the previous experiment when lowerin the s
value. By increasing the x value we get a similar simulation again. However,
these snapshots were not taken at the same time in the simulation. There

11



Kappa: 100 Kappa: 100 Kappa: 500
Young: 1000 Young: 1000 Young: 1000
Poisson: 0.23 Poisson: 0.23 Poisson: 0.23

Figure 5: The effect of lowering the fracture resistance value k. With k = 20 a
piece breaks off seconds after the initial fracture occurred.

appears to be something off in the implementation with regards to scaling, or
the lack of regards to scaling, so to get a perfect scaling in the simulation the
Young’s modulus and perhaps even the Poisson ration have to be scaled to
match.

5 Discussion

Due to scaling not working properly there is a large possibility that the exact
values used in the simulation can not be taken for face value. When for instance
testing a bridge with this simulation and it can withstand ”7200”, the exact unit
is unknown due to the scaling. What it can do is being used to compare two
instances with equal properties but different shapes because the comparison is
invarient under this problem of unit scale. Being better still remains better,
regardless of the exact quantity.

From the simulation it also never became clear if the method could be used
for materials more often simulated as rigid bodies. Such as metal, wood, or
concrete objects. It seems rather ideal to have one simulation capable of sim-
ulating many different materials. Though, it is quite possible the lack of this
observation can be blamed on the implementation of the method as well as the
experiment. The implementation’s downsides have already been explained in
Section 3.3. The experiment could be considered flawed because the pushing
and pulling on the top and bottom of the objects was a fixed movement each
timestep, instead of a force being applied on the points. Having a (slowly) ap-
plied force could simulate objects only capable of minute movements to have
them build stress in the appropriate areas rather than snapping immediately
at the border where the object is being pulled. This effect was visible in the
second example of Figure 5 where the fracturing occurs on the top and bottom
exactly at the border of points being moved a fixed step and the points reacting

12



purely to internal forces.

6 Future Work

Having shortcomings in regards to the original method, it is fairly easy to suggest
improvements. Starting with the most obvious but probably biggest task is the
actual implementation of a backwards Euler method. This should remove the
ripple effect from the simulation resulting in potentially enabling the simulation
of solid materials instead of jelly-like substances. At the least the reaction to
forces and locations of fracturing will become far more accurate.

Enable the CFL condition to regulate the timestep size rather than a fixed
time step size. This would either speed up the simulation or make it more ac-
curate depending on the situation. If the simulation is light, the CFL condition
will enable larger time steps. And if the simulation is intense, the CFL condition
will reduce the time step size to increase the accuracy.

Coupling the tetrahedal mesh data structure with the level set and add the
cut-planes. This will affect quite a number of things. While adressing the
main memory issue, it will significantly increase the performance because the
complete reconstruction of two mesh objects and a level set is quite intensive,
and is by far the most intensive part of an iteration. At the same time it will
increase the amount of detail with the cut-planes, allow for smoother fracture
development and potentially more fragments.

A thorough check of the math to find the scaling issue. My assumption is
that T forgot to scale the mass with the density over the amount of points, but
was unable to pinpoint the right location. If the math is checked completely,
a simulation could then accurately state that an object can resist x-amount of
Newton force.

Implementing the collision model written by the authors of the paper to
allow the simulation of interaction between different objects and fragments.

Aside from fixing the implementation flaws or shortcommings I could see the
simulation of extremely brittle and foam like materials working. But it would
probably require some tweaking to not destroy the entire object at the slightest
movement.

13



References

[1] J. Hegemann, C. Jiang, C. Schroeder, and J.M Teran. A level set method
for ductile fracture, 2013.

[2] E. Sifakis and J. Barbic. Fem simulation of 3d deformables solids: a practi-
tioner’s guide to theory, discretization and model reduction., 2012.

[3] A. McAdams, Y. Zhu, A. Selle, M. Empey, R. Tamstorf, J. Teran, and
E. Sifakis. Efficient elasticity for character skinning with contact and colli-
sions., 2011.

[4] University of Utah. Febio, http://www.febio.org.
[5] Stanford Univeristy. Physbam, http://physbam.stanford.edu/.
[6] Borek Patzak. Oofem, http://www.oofem.org/en/oofem.html.

[7] L. Vese and T. Chan. A multiphase level set framework for image segmen-
tation using the mumford and shah model., 2002.

14



